

Altair HyperWorks Driving the Product Development Process of Turbomachines

1. Dresdner-Probabilistik-Workshop

Altair Engineering GmbH Dr. Dominik Schlotz Director Business Development Dresden, 09.10.2008

AGENDA

- Company Overview
- HyperWorks A Platform for Innovation
 - HyperWorks Overview
 - Altair HyperWorks Morphing Technology
 - Design Studies with solver-neutral Software Altair HyperStudy
- HyperWorks Applications
- Summary
- Q&A

AGENDA

- Company Overview
- HyperWorks A Platform for Innovation
 - HyperWorks Overview
 - Altair HyperWorks Morphing Technology
 - Design Studies with solver-neutral Software Altair HyperStudy
- HyperWorks Applications
- Summary
- Q&A

Invenio Founded 1985 in Detroit, USA 11588 TREALEDORG Editha DURA капека Henest LS.A SIEMENS ~1400 Colleagues voestabling CRH Low-branch DRIVE SCHRICK ISE COA DEH 30 Offices worldwide O an EADS PACCAR More than 3,500 Customers AND DESCRIPTION OF A DE 1H9J30 Toronto, Canada Moscow, Russia Beijing, China Seattle, USA Lund, Sweden Los Angeles, USA Windsor, Canada Gothenburg, Sweden Shanghai, China Austin, USA Leamington, UK Delhi, India Dallas, USA **Detroit**, USA Pune, India Manchester, UK Tokyo, Japan **Boeblingen, Germany Boston, USA Bangalore**, India Osaka, Japan Milwaukee, USA Nagoya, Japan **Cologne**, Germany Atlanta, USA Hamburg, Germany Hannover, Germany Seoul, Korea **Munich, Germany** Paris, France Sao Paulo, Brazil Melbourne, Australia Sophia Antipolis, France **Toulouse**. France Torino, Italy Milan, Italy

Altair – Global CAE Supplier

🛕 Altair

Industry Verticals

Over 3.500 Customers in Various Industries

Altair Proprietary and Confidential Information

Computer-aided engineering software suite for product design and manufacturing

- Market leader for modeling, visualization and optimization of complex mechanical systems
- A Platform for Innovation Powerful, open and easy to program design environment for mechanical engineers in all industries

Grid computing technology that maximizes the ROI of enterprise IT assets

- Market share leader with over 30,000 deployments worldwide
- PBS Professional and OpenPBS
- Proven scalability and reliability on the largest and most complex data centers
- Mature Eco-System partner network ensures seamless integration and ease of deployment
- It's EveryWare! Manages heterogeneous mix of Unix, Linux and Windows systems

Altair Proprietary and Confidential Information

The shortest distance between concept and reality

High value and innovative product design, process mapping and automation consulting services

Altair Engineering Inc.

AGENDA

- Company Overview
- HyperWorks A Platform for Innovation
 - HyperWorks Overview
 - Altair HyperWorks Morphing Technology
 - Design Studies with solver-neutral Software Altair HyperStudy
- HyperWorks Applications
- Summary
- Q&A

Altair HyperWorks - Overview

Open Architecture for Better Integration into Enterprise PLM Architectures

- STEP UG
- Pro/E

- Abaqus
- Ansys
- Deform
- Fluent
- Madymo

Moldflow

- **StarCD** Permas
- PamCrash

- Radioss

Efficient Preprocessing

- HyperMesh
 - Geometry cleanup, automated or manual
 - Meshing and assembly for rapid FE model development
 - Advanced Hex-meshing
 - State-of-the-art solver interfaces
- BatchMesher
 - Automated "Batch" Meshing and Assembly
 - Performs geometry cleanup and automeshing (in a "batch" mode) for CAD files
 - Operates on shell meshes
 - Significantly reduce model cleanup and meshing time

Morphing Technology

HyperMorph (embedded in HyperMesh)

What is morphing?

Derive from metamorphose, transformation

Morphing Existing Models to New Designs

- Description
 - Rapidly change geometry of existing FE model interactively or parametrically
 - Adapt existing FE models to new design data
- Benefits
 - Dramatic reduction in modeling time
 - Enables rapid "What If?" studies
- Application Examples in Gas Turbine Industry
 - "System Level Morphing" HyperMorph is used to perform morphing of an engine model to allow rapid assessment of bearing and seal location/configuration
 - "Component Morphing" Turbine blades morphed to "in-operation" shape

Example for cyclic morphing

Rapid Evaluation of "Concessions"

- Description
 - Rapidly assess the usability of out-of-spec high value components
 - FE model is morphed to the "as manufactured" geometry, loads and boundary conditions are retained
 - Assessment usability made within the one week deadline
 - Components on which this has been used include turbine blades and engine casings
- Benefits
 - Significant cost savings by using high value components that were usually scrapped
 - Just one of the concessions saved by this manufacturer more than covers the price of a HyperWorks license for HyperMesh

Altair

Common Post-Processing Environment

- Engineering analysis of test data and simulation results
- Report templates
 - Rapid post-processing of design iterations
 - Automated report generation
 - Publish to HTML and MS/Office
- Results mapping from one analysis to a successive analysis
- Test data correlation and advanced data analysis
- Comprehensive support of virtually all commercial solvers, including ANSYS, NASTRAN and LS-DYNA
- Readers for "in-house" codes can be created

Results overlay

Process Automation and Data Management

Altair Process Manager

- Process management and authoring environment to capture best practices for design processes
- Enables integration of diverse applications (from CAD, to in-house applications, to HyperWorks) in organized work flows

Altair Data Manager

- Product performance data management and decision support driven by already established engineering processes
- Manage engineering work-inprocess data in the context of existing PDM system

Altair Proprietary and Confidential Information

Optimization is Driver in CAE Driven Design Process

Altair Proprietary and Confidential Information

1. Dresdner-Probabilistik-Workshop Copyright © 2008 Altair Engineering, Inc. All rights reserved. 21

Performing Design Studies

Altair HyperStudy

Design Studies with Altair HyperStudy

Process Flow in HyperStudy

AGENDA

- Company Overview
- HyperWorks A Platform for Innovation
 - HyperWorks Overview
 - Altair HyperWorks Morphing Technology
 - Design Studies with solver-neutral Software Altair HyperStudy
- HyperWorks Applications
- Summary
- Q&A

🛕 Altair

Shape Optimization of a Turbine Blade Root

Objective

Minimize stresses and strains at the root of turbine blade where it attaches to the disc to improve fatigue life

- Software Tools
 - FE Model development HyperMesh
 - Solver ANSYS
 - Shape variable definition HyperMorph
 - Optimization setup HyperStudy
 - Optimization HyperStudy
- Cyclic symmetry boundary conditions
- Two cases 8500 rpm & 4000 rpm

Shape Optimization of a Turbine Blade Root

Shape variables definition with HyperMorph

Shape Optimization of a Turbine Blade Root

Elastic-Plastic Analysis Optimization Results (8500 RPM)

Altair Proprietary and Confidential Information

1. Dresdner-Probabilistik-Workshop

op Copyright © 2008 Altair Engineering, Inc. All rights reserved. 28

Engine Compressor Blade Optimization

- Challenge
 - Increase pressure ratio of radial compressor through optimized blade design
- Solution
 - CFD optimization using HyperStudy
 - Shape optimization with morphing
 - Objective: maximize pressure relation between inlet and outlet
- Results
 - 5.6% increase in pressure ratio, which leads to better fuel efficiency and higher engine power

enables us to perform automated design and optimization studies." Dr. Mario Dittmann, MTU Friedrichshafen GmbH

🛕 Altair

Optimization and Reliability Analysis of a Mars Lander

ESA Aurora Exploration Program Launch in 2011 or 2013

New Lander Design Concept

- Vented airbag, coming to rest on 2nd bounce
- Traditional concepts come to rest after 10 to 20 bounces

Failure modes

- Roll-over (payload overturns),
- Dive-through (payload impacts rock)
- Rupture (fabric tears)

Full scale terrestrial testing expensive/difficult: Therefore virtual design approach

Optimization and Reliability Analysis of a Mars Lander

Reliability Study: Range of Conditions

Only rock impact load case considered Controlled/Uncontrolled conditions

- Wind speed (Weibull)
- Rock Height (Exponential)
- Lander pitch attitude (+/- 20 deg)
- Lander pitch rate (+/- 30 deg/s)

Results

Optimization and Reliability Analysis of a Mars Lander

AGENDA

- Company Overview
- HyperWorks A Platform for Innovation
 - HyperWorks Overview
 - Altair HyperWorks Morphing Technology
 - Design Studies with solver-neutral • Software Altair HyperStudy
- HyperWorks Applications
- Summary
- Q&A

Summary

- Deep Knowledge of CAE Design Processes
 - CAE Process Automation / Integration
 - How to Best Exploit CAE Software and Methods
 - Provide Mentoring and Best Practices Comfortable with Technology Transfer
- HyperWorks, Integrated Suite of CAE Tools to Drive Product Innovation
 - HyperMesh: Highly Advanced Preprocessor Increasing your Efficiency
 - BatchMesher: Fully Automated Geometry Cleanup and Shell Meshing
 - HyperMorph: Allowing Rapid Design Changes Resulting in Dramatic Cost Savings
 - HyperStudy: DOE, Multi-disciplinary Optimization and Stochastic Simulation Engine
- Altair is a Reliable Business Partner Exhibiting Strong Growth
 - Flexible HyperWorks Licensing Concept Reducing Software Costs
 - Passing on Business Benefits to Customer, e.g. HyperWorks Enabled Partner Program

Thank You For Your Attention!

Another Morphing Example