

Realize Your Product Promise™

Multi-Physics Design Optimization of an Axial Compressor

Application, Theory and Best-Practice Guide-Lines

Fluid Dynamics

Structural Mechanics

Electromagnetics

Systems and Multiphysics

Johannes Einzinger, ANSYS Thomas Most, Dynardo

Meta-Model of Optimal Prognosis (MoP)

- optiSLang inside Workbench
- MoP Theory

Axial Compressor

- Simulation Model
- Design Optimization

Robust Design Optimization

ANSYS optiSLang inside Workbench

The Workbench Effect – easier to use

ANSYS Optimization Strategy

General Procedure:

- Design Optimization
 - Gradient Based
 - Generic
 - Evolutionary

- Design of Experiments
 - Data Sampling
 - Detecting Correlations
 - Detecting Important Parameters
 - Parameter Space
 Reduction
 - Response Surface
- Design Optimization

© 2011 ANSYS, Inc. October 1, 2012

5

ANSYS Design of Experiments

Design of Experiments, Sampling ANSYS[®]

ANSYS Linear Correlation

Mean value μ , variance σ^2 and standard Deviation σ :

$$\mu_{X} = \frac{1}{N} \sum_{k=1}^{N} X_{k}; \quad \sigma_{X}^{2} = \frac{1}{N-1} \sum_{k=1}^{N} (X_{k} - \mu_{X})^{2}$$

Linear Coefficient of Correlation:

ANSYS Polynomial Least Square

PLS: p polynomials h(x) and coefficients c $y(x) \approx \hat{y}(x) = h^T(x) \cdot c$ $h^T(x) = (1, x_1, x_2, ..., x_1^2, x_2^2, ..., x_1 \cdot x_2, ..)$

Equations for all data points k=1...N with error ε_k (N>p)

$$y_k = \boldsymbol{H}_k^T \cdot \boldsymbol{c} + \boldsymbol{\varepsilon}_k \qquad \qquad \boldsymbol{H}_k^T = [N \times p]$$

11

Square error
$$S \rightarrow \min$$

$$S(c) = \varepsilon_k^T \cdot \varepsilon_k = (y_k - H_k^T \cdot c)^T \cdot (y_k - H_k^T \cdot c)^* \rightarrow \min$$
Leads to equation for coefficients c:

$$\frac{\partial S}{\partial c} = H_k \cdot H_k^T \cdot c - H_k \cdot y_k = 0$$
and Polynomial Regression:

$$\hat{y}(x) = h^T(x) \cdot (H_k \cdot H_k^T)^{-1} \cdot H_k \cdot y_k$$
Q 2011 ANSYS, Inc.

ANSYS Polynomial Least Square

- Number of Data Points n_p for N Input Parameter for Response Surface Y_k
- Polynomial respects multiple parameters!
- Mixed terms are not used: n_p ~N²
- Parameter Reduction
 with Significance Filter

 $n_p < 1 + 2 \cdot N$

$$Y_k = f(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_6, \dots, xN)$$

Polynomial	#Data Points	
Const.	1	
Linear x _i	N	
Pure quadratic x _i ²	N	
Hixed quadratic x _i x _j	$0.5 \cdot N \cdot (N-1)$	

$$n_p = 1 + 2 \cdot N + 0.5 \cdot N (N-1)$$

ANSYS Coefficient of Importance

Estimation Operator:

$$\rho_{ij} = \left(\frac{E(X_i \cdot X_j)}{\sigma_{X_i} \cdot \sigma_{X_j}}\right) = \left(\frac{\sum_{k=l}^{N} (X_i^{(k)} - \mu_{X_i}) \cdot (X_j^{(k)} - \mu_{X_j})}{(N-l) \cdot \sigma_{X_i} \cdot \sigma_{X_j}}\right)$$

Coefficient of Determination: $CoD = \left(\frac{E\left(Y \cdot \hat{Y}\left(X_{k}\right)\right)}{\sigma_{Y} \cdot \sigma_{\hat{Y}}}\right)^{2}$

Coefficient of Importance:

 $CoI_{j} = CoD(X_{1}...X_{N}) - CoD(X_{1}...X_{j-1}, X_{j+1}...X_{N})$

ANSYS Importance Filter

- Significance Filter
- Importance Filter
- Remaining parameters are used for non-linear approximation
- Basic Points for Approximation
- Test Points for Quality
 Assurance
 Data-Split

$$CoP = \left(\frac{E(Y \cdot \hat{Y})}{\sigma_{Y} \cdot \sigma_{\hat{Y}}}\right)^{2} = \left(\frac{\sum_{k=I}^{N} (y^{(k)} - \mu_{y}) \cdot (\hat{y}^{(k)} - \mu_{\hat{y}})}{(N-I) \cdot \sigma_{Y} \cdot \sigma_{\hat{Y}}}\right)^{2}$$

$$Y_k = f(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_6, \dots, xN)$$

MNSYS Moving Least Square

15

MLS: p polynomials h(x) and coefficients a(x)

$$y(x) \approx \hat{y}(x) = h^{T}(x) \cdot a(x)$$

Weighted square error $S \rightarrow \min$
 $S(a) = \varepsilon_{k}^{T} \cdot W_{k} \cdot \varepsilon_{k} = (y_{k} - H_{k}^{T} \cdot a)^{T} \cdot W_{k} \cdot (y_{k} - H_{k}^{T} \cdot a) \rightarrow \min$
Leads to equation for coefficients a(x):
 $\frac{\partial S}{\partial a} = H_{k} \cdot W_{k} \cdot H_{k}^{T} \cdot a - H_{k} \cdot W_{k} \cdot y_{k} = 0$
Moving Least Square Regression:
 $\hat{y}(x) = h^{T}(x) \cdot A(x)^{-1} \cdot B(x) \cdot y_{k}$
 $A(x) = H_{k} \cdot W(x) \cdot H_{k}^{T}$
 $B(x) = H_{k} \cdot W(x)$
 $W(x) = diag[w(x)]$
Deter 1, 2012

ANSYS Coefficient of Prognosis, CoP

Fraction of explained variation
 of prediction

 $CoP = 1 - \frac{S_E}{S_T}$ $S_T = \sum (Y_i - \mu_{Y_i})^2$ $S_E = \sum (Y_i - \hat{Y}_i)^2$ $CoP_i = CoP \cdot S_{T_i}$

 Estimation of CoP by cross validation using a partitioning of available the samples

1.00

- CoP increases with increasing number of samples
- CoP is suitable for interpolation and regression models
- With MLS continuous functions also including coupling terms can be represented with a certain number of samples
- Prediction quality is better if unimportant variables are removed from the approximation model

Meta-Model of Optimal Prognosis, MoP

ANSYS Value of CoP and MoP

- Statistical Reliability → CoP
- Parameter Reduction
 - -Number of Parameters
 - -Min/Max Parameter Bounds

Response Surface shows Optimization

ANSYS Adaptive Response Surface Method

- Start Point
- Initial Sample
 - Approximated Response Surface
 - Best Point
 - New Sample with smaller Range

ANSYS Pareto Optimization

- Initial Generation
 - Select best
- Second Generation

 Select best
- Third Generation

 Select best
- Fourth Generation
 - Select best

∢ **Objective** Pareto Front **Objective B**

ANSYS Primary Design, PCA Ltd.

- 1.5 Stage Axial Compressor
- IGV(n=37)
- R1 (n=71, Gap @ Shroud 2% Span)
- S1 (n=91, Gap @ Hub 2% Span)
- Pressure Ratio Π=1.4
- Mass Flow Rate 10.6 [kg/s]
- Diameter d = 0.525 [m]
- Rot. Vel. Ω = 9300 [rpm]
- Blade Mach Number M_u=0.75
- Specific Speed n_s= 1.3
- Specific Diameter d_s=2.3
- Load Coefficient Ψ=0.45

ANSYS Geometry Parameterization

CFD Simulation **ANSYS**®

21

S+QQ

Nodal based FVM

$$\int_{V} \rho \varphi \, dV + \prod_{A} \rho \varphi \, \mathbf{V} \cdot d\mathbf{A} = \prod_{A} \Gamma \nabla \varphi \cdot d\mathbf{A} + \int_{V} S_{\varphi} \, dV$$

- Mass & Momentum, Energy...
- Turbulence Model:
 - Shear Stress Transport
- -Two sector by passage, MFR:
 - Profile-/Time Transformation
 - Periodic Interface

27

ANSYS Quality Assurance Iteration Error

ANSYS Quality Assurance Discretization Error

ANSYS Static Structural (Pre-Stress)

ural Error 2 Structural Erro

9.58864-10

9.5886e-11

9.5886e-14

0 5896a.15

2.7462e-18

Static Solution:

- Displacement
- Strain & Stress
- Numerical Error
- Pre-Stress for further Analysis

up-11 18:39

1.603268

1.3742e8

1.1452e8 9.1617e7

6.8715e7

4.5813e7

2.2911e7 9337.1 Mi

2.0613e8 Ma

Discretization

Error<10-8

October 1, 2012

Maximal v. Mises Stress ~ 220 MPa

	Mode	Frequency [Hz]
1	1.	1537.3
2	2.	2931.7
3	3.	5448.2
4	4.	7053.
5	5.	7567.1
6	6.	11155

- Pre-Stressed Modal Analysis:
 - Eigen Frequencies and Vectors
 - Data for further MOR-Analysis

R

34

Maximal Stress

Blade Angle: Hub, Mid Leading Edge

-54

-52

-46

- CoP=64% and 65%
 - -small value
 - -Numerical error?
 - -Model error?
- Important Variables
 Parameter Reduction
- MoP is plausible 35 © 2011 ANSYS, Inc. October 1, 2012

ANSYS Trouble Shooting for small CoP

- Number of Evaluated Designs?
 Check CoP(80)~CoP(150)
- Numerical Error?
 Best-Practice!
- Model Error?
- Multiple-Mechanisms

 Use alternative Output
- Options:
 - -Design Optimization
 - -Meta-Model in Subspace

ANSYS Design Optimization, Strategy

Sensitivity Analysis:

- Shows potential
- Indicates global optimum
- Parameter reduction
- Modify parameter space

Strategy:

- Get best Design from SA/MoP
- Evaluate this Design and get initial for:
- Optimization in sub space: ARSM
 - Small Number of Parameter
 - Global Optimum

ANSYS Design Optimization, Summary

	Initial Design	Best Design SA	Best Design Solved (MoP)	Best Design ARSM
Efficiency [%]	87.0	88.0	88.9 (91.0)	88.9
p _{tot} Ratio [-]	1.41	1.41	1.41 (1.44)	1.41
Max. Stress [MPa]	219	235	232 (230)	239
#Designs	1	150	1 (0)	100

