
© 2014 Rolls-Royce plc 

The information in this document is the property of Rolls-Royce plc and may not be copied or communicated to a third party, or used for any purpose other than that for 

which it is supplied without the express written consent of Rolls-Royce plc. 

This information is given in good faith based upon the latest information available to Rolls-Royce plc, no warranty or representation is given concerning such information, 

which must not be taken as establishing any contractual or other commitment binding upon Rolls-Royce plc or any of its subsidiary or associated companies. 

Trusted to deliver excellence 

Pranay Seshadri, Shahrokh Shahpar, Geoffrey Parks 

CFD Methods, DSE  

 

 

 

Rolls-Royce Proprietary 

Aggressive Design in Turbomachinery 

October 9th, 2014 

7th Dresdner Probabilistik-Workshop,  
Dresden, Germany 



Introduction 
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• UQ is not just about an error bar 
 

• It is a rapidly developing field encompassing 
• CFD prediction 
• Meshing and geometry generation and processing 
• Algorithms for efficient sensitivity analysis 
• Computationally tractable frameworks for robust design 
• Statistical analysis on sparse data 

 
• Must be factored when designing with models for engine 

• Uncertainties (variability) exist in both models & engine 
 

• Goal of UQ research in CFD methods is to  
• Increase engine efficiency given variability  
• Maintain engine efficiency given variability 
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Uncertainty Quantification (UQ) 



Engine Aleatory Uncertainties 

Fan rear seal 

leakage flows  

HP-NGV manufacturing 

variations on capacity 

Tip clearance variations 

in HP compressors 

Using GOM data to 

characterize surface 

uncertainties 

Unsteady aero 

uncertainties 

 

Squealer tip thermal 

deterioration 

uncertainty 

Rolls-Royce Proprietary 

Inlet lip 

manufacturing 

uncertainties 

Ice accretion 

uncertainty in 

compressors 

Combustion UQ 

Aero-acoustics UQ in 

fans 

 

Uncertain inlet 

boundary conditions 

 



Engine Epistemic Uncertainties 

RANS turbulence 

modeling uncertainties 

 

Conjugate heat transfer 

modeling uncertainties 

 

Mesh independence 

during optimization 
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Structured / unstructured 

meshing techniques 

 

Surface roughness 

models in RANS 

 

Transition modeling 

 

Hybrid RANS-LES 

approaches 

 

Bayesian hybrid modeling 

for experimental data – 

CFD validation 
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Grid 
Generation 
CFD Solution 

Design Methodology with Uncertainty 
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Rolls-Royce CFD Methods  
3D Designs 
 
Optimization: SOFT 
Uncertainty Quantification: SOFT+UQ 
Grid & Geometry Generation: PADRAM 
CFD Solution: HYDRA 
 

 
 
 



physical 

model 

output 

design 

variables 

uncertain 

variables 

Mathematical Formulation 
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• Optimization under uncertainty 



• Methods for optimization under uncertainty 

• Robust design, reliability based design optimization, first 

order reliability method, second order reliability method, 

most probable point,… 

• Some methods optimize moments, others optimize tails.  

physical 

model 

output 

design 

variables 

uncertain 

variables 

• Optimization under uncertainty 

Mathematical Formulation 
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optimization goal is a 

random function 

Take the expectation 

Mathematical Formulation 
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Scalarization 

Multi-objective optimization 

optimization goal is a 

random function 

optimization goals are 

deterministic functions 

Take the expectation 

Mathematical Formulation 
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Some Issues 

• Scalarization requires apriori knowledge 
 

• Cost of Multi-Objective Optimization 
• Requires many objective function evaluations 
• Order of magnitude more expensive than single-objective 

problem 
 

• What if a large variance is permissible (the PDF has a favorable 
skew)? 
• Skewness is not factored in robust design 
• Mean and variance do not uniquely define a PDF 

 
• What if mean and variance are correlated? 

 
• Challenging to optimize for a certain tail probability 

 
 
 
These issues motivate the present work 
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Mathematics of Aggressive Design 



Probability 
density 
function 

Current design 

Aggressive design seeks to minimize the “distance” between the 
current design PDF and the target design PDF 

Target design 

Aggressive design 

Quantity of Interest 
 (under some uncertainty) 
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Quantity of Interest 
 (under some uncertainty) 

Probability 
density 
function 

Aggressive 

design 

Aggressive design 

Target design 

Aggressive design seeks to minimize the “distance” between the 
current design PDF and the target design PDF 
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physical 

model 

output 

design 

variables 

uncertain 

variables 

Designer specifies target pdf of output 

For a fixed design s, uncertainty produces pdf of f 

Mathematical Formulation 
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Goal is to find the design so that model pdf is 

as close as possible to the designer’s target. 

because it is differentiable. 

where delta is a distance metric. We choose 

Mathematical Formulation 
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Choose an integration rule in the range of the model 

output 

where W is a diagonal matrix of integration weights, t is a vector of 

target pdf evaluations, and us is a vector of model pdf evaluations.  

Discretize the ‘distance’ 
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Quick detour: Kernel Density Estimation (KDEs) 

Rolls-Royce Proprietary 

Kernel density estimation is a statistically well-known 

alternative to histograms 

 

Idea is to replace discrete bins with a unimodal kernel 

function to obtain an analytic definition for a PDF  

Kernel density 
estimate 



Quick detour: Kernel Density Estimation (KDEs) 
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X X X X X X X 

Quantity of Interest 

Probability 



Quick detour: Kernel Density Estimation (KDEs) 
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Kernel density 
estimate 

X X X X X X X 

Probability 

Quantity of Interest 



Choose a discretization in the random space (e.g., Monte Carlo 

samples) 

Use a kernel density estimate of the model pdf with kernel K=Kh with 

bandwidth parameter h 

numerical 

integration 

points for 

objective 

Kernel density estimation of model PDF 
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model eval’d at point 

in uncertain space 



Choose a discretization in the random space (e.g., Monte Carlo 

samples) 

Use a kernel density estimate of the model pdf with kernel K=Kh with 

bandwidth parameter h 

In vector notation with ‘e’ a vector of ones, 

model eval’d at point 

in uncertain space 

numerical 

integration 

points for 

objective 

Kernel density estimation of model PDF 
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target pdf diagonal matrix of 

integration 

weights 

kernel density 

estimate 

Rolls-Royce Proprietary 

Discrete optimization 



Can we use gradient information? 

Accelerating the Process 
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YES! 



Use the gradient of f with respect to design variables s to compute 

the gradient of the objective with respect to s. 

Derivative of kernel 

Partials of model with respect to 

design variables evaluated at 

points in uncertain space 

These are obtained as part of the 

CFD solution using adjoints 

Gradient of the Objective 
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Computational Airfoil Design Using 

Aggressive Design 
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Airfoil with Hicks-Henne bump 
functions 

Computational airfoil design 

= L/D of airfoil 

Inlet mach number for airfoil 
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Computational airfoil design under uncertainty 

Mach number PDF 

Response surface 
  (4 CFD runs) 

Sample response 
surface with Mach 

number distribution 
(Stochastic 
Collocation) 

Kernel density 
estimate 



Robust Design Approach 

Rolls-Royce Proprietary 

Values of interest:  

Optimization problem:  

Result:  

NSGA-2 (3500 evals.) 
 
Dominated designs 
Non-dominated designs 



Aggressive Design Approach 
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Values of interest:  

Optimization problem:  

Close-up  

Result:  

Initial design 
Target design 
Aggressive design 
 



Aggressive Design Approach 
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Metrics Aggressive design Robust design 

Optimization Iterations 8 35 (generations) 

Adjoint CFD 21 x 8 (4 lift, 4 drag) - 

Euler CFD 21 x 4 3500 x 4 

Wall-clock time 37.7 minutes ~1 day 
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Aggressive Design Highlights 

We are not making a direct comparison between aggressive 

design and robust design – one is a single objective problem the 

other is a multi-objective one 

 

Like comparing apples with oranges 

 

 

What we are presenting is a new approach for design under 

uncertainty – based on a target design that the designer has 

selected 

 

Aggressive design is a simple, single-objective method with a 

smooth objective function 

 

It leverages gradient information when present 
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Future Work: Multivariate aggressive design 

The present framework extends nicely to 
multiple quantities of interest 
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