Aggressive Design in Turbomachinery

Pranay Seshadri, Shahrokh Shahpar, Geoffrey Parks CFD Methods, DSE

October 9th, 2014

© 2014 Rolls-Royce plc

The information in this document is the property of Rolls-Royce plc and may not be copied or communicated to a third party, or used for any purpose other than that for which it is supplied without the express written consent of Rolls-Royce plc.

This information is given in good faith based upon the latest information available to Rolls-Royce plc, no warranty or representation is given concerning such information, which must not be taken as establishing any contractual or other commitment binding upon Rolls-Royce plc or any of its subsidiary or associated companies.

Trusted to deliver excellence

Introduction

Uncertainty Quantification (UQ)

- UQ is not just about an error bar
- It is a rapidly developing field encompassing
 - CFD prediction
 - Meshing and geometry generation and processing
 - Algorithms for efficient sensitivity analysis
 - Computationally tractable frameworks for robust design
 - Statistical analysis on sparse data
- Must be factored when designing with models for engine
 - Uncertainties (variability) exist in both models & engine
- Goal of UQ research in CFD methods is to
 - Increase engine efficiency given variability
 - Maintain engine efficiency given variability

3

Engine Aleatory Uncertainties

Engine Epistemic Uncertainties

Surface roughness models in RANS

Transition modeling

Bayesian hybrid modeling for experimental data – CFD validation

Mesh independence during optimization

Hybrid RANS-LES approaches Structured / unstructured meshing techniques **RANS** turbulence modeling uncertainties

Conjugate heat transfer modeling uncertainties

Design Methodology with Uncertainty

Rolls-Royce CFD Methods 3D Designs

Optimization: SOFT Uncertainty Quantification: SOFT+UQ Grid & Geometry Generation: PADRAM CFD Solution: HYDRA

• Optimization under uncertainty

• Optimization under uncertainty

minimize
$$f(s,\omega)$$

- Methods for optimization under uncertainty
 - Robust design, reliability based design optimization, first order reliability method, second order reliability method, most probable point,...
 - Some methods optimize moments, others optimize tails.

 $\min_{s} f(s, \omega)$ optimization goal is a random function

ROYCE

Scalarization

$$\begin{array}{c|c} \text{minimize} & |\alpha \mathbb{E}\{f(\omega,s)\} + (1-\alpha) \sigma\{f(\omega,s)\}| \\ \hline \\ \text{Multi-objective optimization} \\ minimize & \mathbb{E}\{f(\omega,s)\} \\ & \sigma^2\{f(\omega,s)\} \end{array} \qquad \begin{array}{c} \text{optimization goals are} \\ \text{optimization goals are} \\ \text{deterministic functions} \end{array}$$

Some Issues

- Scalarization requires apriori knowledge
- Cost of Multi-Objective Optimization
 - Requires many objective function evaluations
 - Order of magnitude more expensive than single-objective problem
- What if a large variance is permissible (the PDF has a favorable skew)?
 - Skewness is not factored in robust design
 - Mean and variance do not uniquely define a PDF
- What if mean and variance are correlated?
- Challenging to optimize for a certain tail probability

These issues motivate the present work

Mathematics of Aggressive Design

Aggressive design

Aggressive design seeks to minimize the "distance" between the <u>current design</u> PDF and the <u>target design</u> PDF

Aggressive design

Designer specifies target pdf of output

$$t = t(f) \ge 0, \quad \int t(f) \, df = 1$$

For a fixed design s, uncertainty produces pdf of f

$$u_s = u_s(f) \ge 0, \quad \int u_s(f) \, df = 1$$

$$\mathbb{R} \text{ Rolls-Royce}$$

ROYCE

Goal is to find the design so that model pdf is as close as possible to the designer's target.

$$\underset{s}{\text{minimize}} \quad \delta(t, u_s)$$

where delta is a distance metric. We choose

$$\delta(t, u_s) = \int (t - u_s)^2 df$$

because it is differentiable.

Choose an integration rule in the range of the model output M

$$\delta \approx \tilde{\delta} = \sum_{i=1}^{M} \left(t(f_i) - u_s(f_i) \right)^2 w_i$$
$$= (\mathbf{t} - \mathbf{u}_s)^T \mathbf{W} (\mathbf{t} - \mathbf{u}_s)^T$$

where W is a diagonal matrix of integration weights, t is a vector of target pdf evaluations, and u_s is a vector of model pdf evaluations.

Quick detour: Kernel Density Estimation (KDEs)

Kernel density estimation is a statistically well-known alternative to histograms

Idea is to replace discrete bins with a unimodal kernel function to obtain an analytic definition for a PDF

Quick detour: Kernel Density Estimation (KDEs)

Each sample x_i , is represented by a kernel function with zero mean and a finite variance

Probability

Quantity of Interest

Quick detour: Kernel Density Estimation (KDEs)

$$f(x) = \frac{1}{nh} \sum_{i=1}^{n} K\left(\frac{x - x_i}{h}\right)$$

xi – random samples h – bandwidth K – kernel function

Then we sum up all the individual kernels to get the kernel density estimate

Probability

Kernel density estimate

Quantity of Interest

Kernel density estimation of model PDF

Choose a discretization in the random space (e.g., Monte Carlo samples)

$$f_j(s) = f(s, \omega_j)$$

Use a kernel density estimate of the model pdf with kernel K=K_h with bandwidth parameter h

$$u_s(f_i) \approx \frac{1}{N} \sum_{j=1}^N K(f_j(s) - f_i)$$

model eval'd at point numerical integration points for

objective

Kernel density estimation of model PDF

Choose a discretization in the random space (e.g., Monte Carlo samples)

$$f_j(s) = f(s, \omega_j)$$

Use a kernel density estimate of the model pdf with kernel K=K_h with bandwidth parameter h

$$u_s(f_i) \approx \frac{1}{N} \sum_{j=1}^N K(f_j(s) - f_i)$$

model eval'd at point numerical integration points for

objective

In vector notation with 'e' a vector of ones,

$$\boldsymbol{K}_{s}\mathbf{e}, \qquad \boldsymbol{K}_{s}(i,j) = \frac{1}{N}K(f_{j}(s) - f_{i})$$
 Rolls-Royce

Rolls-Royce Proprietary

 $\mathbf{u}_{s} pprox$

Discrete optimization

Accelerating the Process

- - -

$$\tilde{\delta}(s) = (\mathbf{t} - \mathbf{K}_s \mathbf{e})^T \mathbf{W} (\mathbf{t} - \mathbf{K}_s \mathbf{e})$$

Can we use gradient information?

YES!

Gradient of the Objective

$$\tilde{\delta}(s) = (\mathbf{t} - \mathbf{K}_s \mathbf{e})^T \mathbf{W} (\mathbf{t} - \mathbf{K}_s \mathbf{e})$$

Use the gradient of f with respect to design variables s to compute the gradient of the objective with respect to s.

$$\nabla_s \tilde{\delta}(s) = 2(\mathbf{t} - \mathbf{K}_s \mathbf{e})^T \mathbf{W} \mathbf{K}'_s \mathbf{F}'$$

Derivative of kernel

Partials of model with respect to design variables evaluated at points in uncertain space

$$\boldsymbol{K}_{s}'(i,j) = \frac{1}{N} \boldsymbol{K}'(f_{j}(s) - f_{i}) \qquad \qquad \boldsymbol{F}' = \begin{bmatrix} \frac{\partial f_{1}}{\partial s_{1}} & \cdots & \frac{\partial f_{1}}{\partial s_{m}} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_{M}}{\partial s_{1}} & \cdots & \frac{\partial f_{M}}{\partial s_{m}} \end{bmatrix}$$
These are obtained as part of the CFD solution using adjoints
Rolls-Royce Proprietary

Computational Airfoil Design Using Aggressive Design

Computational airfoil design

 $M_{\infty} = 0.6752$

Inlet mach number for airfoil

Airfoil with Hicks-Henne bump functions

w

Computational airfoil design under uncertainty

Robust Design Approach

Values of interest:

Optimization problem:

minimize

$$\mu\left(\frac{Lift}{Drag}\right)^{-1},$$

$$\sigma^2\left(\frac{Lift}{Drag}\right)$$

Result:

Aggressive Design Approach

Values of interest: $K_s e, t$

Optimization problem:

 $\underset{s}{\text{minimize}}$

$$(\mathbf{t} - \mathbf{K_s} \mathbf{e})^{\mathbf{T}} \mathbf{W} (\mathbf{t} - \mathbf{K_s} \mathbf{e})$$

Result:

Aggressive Design Approach

Metrics	Aggressive design	Robust design
Optimization Iterations	8	35 (generations)
Adjoint CFD	21 x 8 (4 lift, 4 drag)	-
Euler CFD	21 x 4	3500 x 4
Wall-clock time	37.7 minutes	~1 day

Aggressive Design Highlights

We are not making a direct comparison between aggressive design and robust design – one is a single objective problem the other is a multi-objective one

Like comparing apples with oranges

What we are presenting is a new approach for design under uncertainty – based on a target design that the designer has selected

Aggressive design is a simple, single-objective method with a smooth objective function

It leverages gradient information when present

Future Work: Multivariate aggressive design

The present framework extends nicely to multiple quantities of interest

Acknowledgements

- Thank Rolls-Royce plc for permission to present this work
- Funded by EPSRC (UK) and Rolls-Royce plc, under the Dorothy Hodgkin Postgraduate Award
- Special thanks to Gianluca laccarino & Paul Constantine

Aggressive Design Literature

Seshadri, P., Parks, G.T., Shahpar, S., Aggressive Design and Active Subspaces For Robust Redesign in Turbomachinery, (Abstract accepted) ASME Turbo Expo 2015, Montreal, Canada

Seshadri, P., Constantine, P.G., Iaccarino, G., Parks, G.T., Aggressive Design: A Density Matching Approach for Optimization Under Uncertainty, Submitted. CMAME, 2014 (arXiv preprint: http://goo.gl/HEZvOY)

Iaccarino, G., Seshadri, P., Constantine, P.G., Beyond Variance-based Robust Optimization: Aggressive Design, SIAM Conference on Optimization 2014 (<u>slides</u>: web.stanford.edu/~jops/tmp/iaccarino_siam_opt14.pptx)

Seshadri, P., Constantine, P. G., Iaccarino, G., Aggressive Design Under Uncertainty, AIAA SciTech 2014, January 13-17, National Harbor, Maryland, 2014 (paper: http://arc.aiaa.org/doi/abs/10.2514/6.2014-1007)

