

Propagation of simultaneous operational and geometrical uncertainties in an integrated CFD design environment by means of a sparse collocation method

Remy Nigro*, <u>Dirk Wunsch</u>**, Gregory Coussement*, Charles Hirsch** *University of Mons, **Numeca International

Dresden, 08.10.2014

Outline

Context

□ UQ tool for simultaneous operational and geometrical uncertainties implemented in FINETM

□ Application of Uncertainty Quantification in Industrial Applications

□ Perspective

The role of uncertainties in Virtual Prototyping

Paradigm shift in Virtual Prototyping (VP) methodology

□ Virtual Prototyping (VP) has become the key technology for industry

Reduce product development cycle costs

Respond to the challenges of designing sustainable products and responding to the environmental challenges

□ These objectives require a highly integrated computer-based design system,

□ Relying on advanced massively parallel hardware, making the virtual product development and qualification process more realizable

□ Example: 3-D viscous flow analysis of engine components uncertainties:

- □ In the boundary conditions representing the operational environment;
- □ On the geometry resulting from manufacturing tolerances and assembly process.
- □ In modeling uncertainties and numerical errors (such as grid dependences)

These uncertainties lead to a global uncertainty on the results of the analysis Which is used as the basis for design decisions!

7th Dresdner Probabilistik-Workshop

Dresden, Germany

The role of uncertainties in Virtual Prototyping

Paradigm shift in Virtual Prototyping (VP) methodology

□ Predicted quantities, such as loads, lift, drag, efficiencies, temperatures,

- □ Now represented by a Probability Density Function (PDF)
- □ This PDF provides a domain of confidence associated to the considered uncertainties

□ This corresponds to a fundamental shift in paradigm for the whole of the VP methodology

Result of deterministic CFD simulations for mean value of measured uncertainty parameter as input

Uncertainty Quantification and Safety Factors

Traditional approach to risk management: safety factors

Deterministic value is estimated for the load xR (*requirement*) and a value is provided, as best as possible, for the maximum *capacity* xC

□ On basis of which a safety factor k=xC/xR is imposed on the system

Safety Factor

Taking the safety factor at a sufficiently high value minimizes risk
 This will generally have detrimental consequences on cost and performance

Uncertainty Quantification and Safety Factors

Traditional approach to risk management: safety factors

Considering uncertainties and their PDF's

□ Allows ranges (under the form of PDF's) for requirements (loads) and capacity (resistance) to be evaluated in a rational way

 \Box Allows to define a failure region where the two PDF's overlap. Full safety, taking into account the known uncertainties, is obtained for k>1

k>1, the design is perfectly safe (top)

k≅1, a certain risk factor will exist (middle)

k<1, a large failure region exists, which would lead to a catastrophic design, of course to be rejected (bottom)

7th Dresdner Probabilistik-Workshop

Dresden, Germany

Outline

Context

 \Box UQ tool for simultaneous operational and geometrical uncertainties implemented in FINETM

□ Application of Uncertainty Quantification in Industrial Applications

□ Perspective

Probabilistic collocation method in FINE[™] (1/2)

□ Non-intrusive probabilistic collocation method by Loeven (2010)

Generic stochastic partial differential equation

$$L(a(\theta))u(\vec{x},t,\theta) = S(\vec{x},t)$$
(1)

L being a differential operator containing space and time derivatives

□ S the source terms

 \Box *a*(θ) the random input parameter

 \Box *u* the solution which depends on outcome of θ

Lagrange interpolating polynomials are used to construct the expansion:

$$u(\vec{x},t,\xi(\theta)) = \sum_{i=1}^{N_p} u_i(\vec{x},t) h_i(\xi(\theta))$$
(2)

 $\Box u(\vec{x}, t, \xi(\theta))$ denotes the deterministic solution

 \Box $h_i(\xi(\theta))$ Lagrange interpolation polynomial corresponding at collocation point ξ_i

A new wave in fluid dynamics NUMECA INTERNATIONAL UQ approach in FINETM

Probabilistic collocation method in FINE[™] (2/2)

Lagrange interpolating polynomial is given by:

$$h_{i}(\xi) = \prod_{\substack{k=1\\k\neq 1}}^{N_{p}} \frac{\xi - \xi_{k}}{\xi_{i} - \xi_{k}}$$
(3)

 \Box where $h_i(\xi_i) = \delta_{ij}$

□ The collocation points are selected by a Gauss quadrature by means of Golub-Welsch algorithm [Golub (1969)] $O^{(1)} f = \sum_{k=1}^{N} f(\xi_{k}) \phi_{k}$

$$Q^{(1)}f = \sum_{k=1}^{N} f(\xi_k)\omega_k$$

 \Box To propagate the input uncertainty the expansion (2) is introduced into (1) providing a system of *N* uncoupled simulations

$$L(a(\xi_i))u_i(\vec{x},t) = S(\vec{x},t)$$
(4)

□ Once all *N* simulations are computed moments of output quantities are calculated from Gauss quadrature with optimal collocation points and weights

Mean:
$$\mu_{\varphi} = \sum_{k=1}^{N_p} w_k \varphi_k(\vec{x}, t)$$
 Variance: $\sigma_{\varphi}^2 = \sum_{k=1}^{N_p} w_k \varphi_k^2(\vec{x}, t) - \mu_{\varphi}^2$

7th Dresdner Probabilistik-Workshop

Tensor-product

Multiple simultaneous uncertainties

UMECA

INTERNATIONAL

D 1D quadrature with *N* points is given by:
$$Q^{(1)}f = \sum_{i=1}^{N} f(\xi_i)\omega_i$$

□ Multi-dimensional quadrature is achieved by tensor-products: $Q^{N_{\text{dim}}}f = (Q^{(1)} \otimes \cdots \otimes Q^{(N_{\text{dim}})})f$ □ Each point along one direction is multiplied with each point along all other directions

The weights are the products of the 1D-rules

 $\Box \text{ Example: 3 point rule in two dimensions}$ $\Box \text{ Abscissas: } \xi = \{\xi_1, \xi_2, \xi_3\}$ $\Box \text{ Weights: } \omega = \{\omega_1, \omega_2, \omega_3\}$ $\Box \text{ Resulting points and weights are:}$ $(x, y) = \begin{cases} (\xi_1, \xi_1), (\xi_2, \xi_1), (\xi_3, \xi_1), \\ (\xi_1, \xi_2), (\xi_2, \xi_2), (\xi_3, \xi_2), \\ (\xi_1, \xi_3), (\xi_2, \xi_3), (\xi_3, \xi_3) \end{cases} \quad \omega = \begin{cases} \omega_1 \omega_1, \omega_2 \omega_1, \omega_3 \omega_1, \\ \omega_1 \omega_2, \omega_2 \omega_2, \omega_3 \omega_2, \\ \omega_1 \omega_3, \omega_2 \omega_3, \omega_3 \omega_3 \end{cases}$

7th Dresdner Probabilistik-Workshop

Curse of dimensionality

9 runs of CFD code

27 runs of CFD code

mⁿ runs of CFD code

Exponential growth of cost with number of dimensions

Number of points created by tensor-product increases exponentially with dimensions

9 points =

27 points =

- □ 1D-rule with 3 points in 2 dimensions ■
- \Box 1D-rule with 3 points in 3 dimensions \longrightarrow
- \Box 1D-rule with 3 points in 10 dimensions \longrightarrow 59049 points = 59049 runs of CFD code
- ...

UMECA

INTERNATIONAL

- \Box 1D-rule with **m** points in **n** dimensions \longrightarrow **m**ⁿ points =
- □ This is the so-called "Curse of dimensionality".

Tensor-products are not feasible for high dimensions

□ UMRIDA quantifiable objective: At least 10 simultaneous uncertainties, in a turn-over time of less than 10 hours on a 100 core parallel computer

□ Sparse Grids can overcome this limit to a certain extend and make non-intrusive collocation methods accessible for higher dimensions

□ Sparse grids were proposed by Smolyak (1963)

Smolyak Quadrature

- □ For different levels of accuracy **k**, define a difference formula: $Q_l^{(1)}f = \sum_{k=1}^l (Q_k^{(1)} Q_{k-1}^{(1)})f$ □ where $Q_0^{(1)}f \equiv 0$
- **With:** $\Delta_k^{(1)} = (Q_k^{(1)} Q_{k-1}^{(1)})f$ we get: $Q_l^{(1)}f = \sum_{k=1}^l \Delta_k$

□ For multi-dimensional quadrature the order of *summation* and *tensor-product* is changed:

$$Q_l^{N_{\text{dim}}} f = \left(Q_l^{(1)} \otimes \dots \otimes Q_l^{(N_{\text{dim}})}\right) f = \left(\sum_{k=1}^{l_1} \Delta_k \otimes \dots \otimes \sum_{j=1}^{l_{\text{dim}}} \Delta_j\right) = \left(\sum_{k=1}^{l_1} \dots \sum_{j=1}^{l_{\text{dim}}} \left(\Delta_k \otimes \dots \otimes \Delta_j\right)\right)$$

□ The sum can now be truncated to include fewer mixed terms

This is done by the use of a multi-index *K*, which is truncated to a **total order**

$$Q_l^{N_{\dim}} f = \sum_{k \in K} \left(\Delta_k^{(1)} \otimes \cdots \otimes \Delta_k^{(N_{\dim})} \right)$$

Multi-Index

□ We can write for two dimensions and level 2:

$$\sum_{k \in K} a_k = \sum_{i=0}^2 \sum_{j=0}^2 a_{ij}$$

□ For the Smolyak Quadrature: $Q_l^{N_{\text{dim}}} f = \sum_{k \in K} (\Delta_k^{(1)} \otimes \cdots \otimes \Delta_k^{(N_{\text{dim}})})$

□ The classical truncation by total index is isotropic and gives: $K = \{k \in N_0^{\dim} : ||k||_1 \le l + \dim -2\}$

Comparison tensor-product to sparse grid

Sparse-Grid: 5

Points for tensor grids and sparse grids with linear and exponential growth

□ Sparse grids can be build with linear and exponential growth in number of points per level

- \Box # points for linear growth: # points = 2 level + 1
- \square # points for exponential growth: # points = $2^{\text{level+1}} 1$

□ Important that level zero is mid-point rule for sparse grids!

Level		0			1			2			3			4			5	
Dimension	Tensor	Sparse LG	Sparse EG	Tensor	Sparse LG	Sparse EG	Tensor	Sparse LG	Sparse EG	Tensor	Sparse LG	Sparse EG	Tensor	Sparse LG	Sparse EG	Tensor	Sparse LG	Sparse EG
1	2	1	1	3	3	3	4	5	7	5	7	15	6	9	31	7	11	63
2	4	1	1	9	5	5	16	17	21	25	45	73	36	97	221	49	181	609
3	8	1	1	27	7	7	64	31	37	125	105	159	216	297	597	343	735	2031
4	16	1	1	81	9	9	256	49	57	625	201	289	1296	681	1265	2401	2001	4969
5	32	1	1	243	11	11	1024	71	81	3125	341	471	7776	1341		16807		
10	1024	1	1	59049	21	21	1048576	241	261	9765625	1981	2441	60466176	12981		282475249		

□ Table summarizing different grid sizes

□ For a given 1D-accuracy exponential growth sparse grid has fewest points

Handling operational uncertainties - Selection from GUI

□ Selection of operational uncertainties by simple selection from boundary conditions

UQ tool for operational and geometrical uncertainties

Handling operational uncertainties – Automatic generation of computations

□ Tensor-product or Sparse Grids are used to calculate entries for sub-computations

UMECA

INTERNATIONAL

UQ tool for operational and geometrical uncertainties

Geometrical uncertainties require modification of the geometry!!!

□ Need a platform that allows for automatic parameterization of geometry, meshing and simulation set-up

□ Combined operational and geometrical uncertainties based on optimization tool FINETM/Design

□ This allows also for a natural extension to optimization under uncertainties

UQ module is introduced on this basis, which controls parameterization of geometry, meshing and simulation set-up

UQ tool for operational and geometrical uncertainties

Selection of design parameters through GUI

□ All design parameters can be combined with uncertainties

□ Even new parameters can be added, such as the tip gap

LEAN_BETA1	-2.2324952064	-0.2324952064	1.76750479356	1	🗆 Uncertainty
LEAN_BETA2	-2.7720933921	-0.7720933921	1.22790660782	1	🗆 Uncertainty
NB	36	36	36	2	🗆 Uncertainty
BLADE_ROTATION	0.08761070082	0.08761070082	0.08761070082	1	🗆 Uncertainty
TIP_GAP	0	0.000356	0.001	1	🗖 Uncertainty
S1_LE_R_NOM	0.00012285585	0.00012285585	0.00012285585	1	🔲 Uncertainty
S2_LE_R_NOM	8.70765922148	8.70765922148	8.70765922148	1	🔲 Uncertainty
S3_LE_R_NOM	3.04267736287	3.04267736287	3.04267736287	1	🔲 Uncertainty
S1_TE_R_NOM	0.00021949334	0.00021949334	0.00021949334	1	🗆 Uncertainty
S2_TE_R_NOM	0.00011880032	0.00011880032	0.00011880032	1	🗆 Uncertainty
S3_TE_R_NOM	9.17886681025	9.17886681025	9.17886681025	1	🗆 Uncertainty
TE_VARIATION	-10	1	10	1	🗖 Uncertainty
LE_VARIATION	-10	1	10	1	🗖 Uncertainty

UQ tool for operational and geometrical uncertainties

Selection of product rule and uncertainty type from GUI

□ All parameters can be selected and suitable PDF can be attributed

□ Computations with different geometries and meshes are automatically generated

VUMECA

INTERNATIONAL

Post-treatment of non-deterministic simulations

□ First four moments of selected scalar output quantities are calculated automatically

All Quantities	>>	Selected Quantites	Value	Mean Value	Variance	Skewness	Kurtosis
Absolute_Mass_flow Absolute_total_pressure_ratio	PostProcess	Absolute_Mass_flow Absolute_total_pressure_ration	20.782 o 2.0472 o 87174	20.77533334 2.0474833334 0.8715733336	0.1684358889 0.0002389847223 1.083455556e.06	-0.006605365744 3 1.888966337e-07 4 775139909e-10	0.08299840345 1.188237106e-07 2.315118814e-12
r olydopro_enrolency		r olya opic_enterency	0.07174	0.0710700000	1.0034333300=00	-1.7701303096-10	2.310110014612
Selection Filter		Selection Filter					

□ Visualization of performance curve for turbo-machinery applications with uncertainty bars

□ Reconstruction of PDFs based on first four output moments (Pearson method)

UMECA

INTERNATIONAL

Output of non-deterministic simulations

Probability distribution function (PDF) of output quantities

Performing non-deterministic simulations

□ The output is not a single number anymore but a PDF

□ From the example of Monte-Carlo simulations it becomes obvious that the output of nondeterministic simulations is a PDF

□ How his this information provided by the here used probabilistic collocation method or by moment methods?

□ PDF of output quantities is characterized by the moments of the output quantity

Output of non-deterministic simulations

Statistical moments of a PDF

UMECA

INTERNATIONAL

□ Influence of Variance (or standard deviation σ^2 =Var(X)) □ Influence of Skewness

λ7

 N_p

Mean

$$\mu_{\varphi} = \sum_{k=1}^{N_p} w_k \varphi_k(\vec{x}, t)$$

Variance (standard

deviation)

Skewness

Kurtosis

$$\sigma_{\varphi}^2 = \sum_{k=1}^{N_p} w_k \varphi_k^2(\vec{x}, t) - \mu_{\varphi}^2$$

$$\sum_{k=1}^{N_p} w_k \varphi_k^3(\vec{x}, t) - \mu_{\varphi}^3$$
$$\sum_{k=1}^{N_p} w_k \varphi_k^4(\vec{x}, t) - \mu_{\varphi}^4$$

$$w_k arphi_k^4 ig(ec x,tig) - \mu_arphi^4$$

Dresden, Germany

Output of non-deterministic simulations

How to obtain from the moments of a PDF to the PDF itself

□ Based on these statistical moments a PDF can be reconstructed by PEARSON system [Pearson (1895)]

Output of non-deterministic simulations

How to obtain from the moments of a PDF to the PDF itself

□ Verification of reconstruction on known PDF shape

NUMECA

Level of collocation method

Which level is needed for the collocation method

□ Increasing level leads to higher computational cost

Level		0			1			2			3			4			5	
Dimension	Tensor	Sparse LG	Sparse EG	Tensor	Sparse LG	Sparse EG	Tensor	Sparse LG	Sparse EG	Tensor	Sparse LG	Sparse EG	Tensor	Sparse LG	Sparse EG	Tensor	Sparse LG	Sparse EG
1	2	1	1	3	3	3	4	5	7	5	7	15	6	9	31	7	11	63
2	4	1	1	9	5	5	16	17	21	25	45	73	36	97	221	49	181	609
3	8	1	1	27	7	7	64	31	37	125	105	159	216	297	597	343	735	2031
4	16	1	1	81	9	9	256	49	57	625	201	289	1296	681	1265	2401	2001	4969
5	32	1	1	243	11	11	1024	71	81	3125	341	471	7776	1341		16807		
10	1024	1	1	59049	21	21	1048576	241	261	9765625	1981	2441	60466176	12981		282475249		

□ To which order should the expansion be truncated?

□ The required order is controlled by the random variable which is represented (flow solution), particularly its probability law

This is however not known a priori, but the law associated with the input uncertainties is known

□ The error by truncating the expansion to a given order must be evaluated for statistical output moments

□ Unfortunately, the computation cost increases with increasing order

Outline

Context

□ UQ tool for simultaneous operational and geometrical uncertainties implemented in FINETM

□ Application of Uncertainty Quantification in Industrial Applications

□ Perspective

Application to Rotor 37

Test case description: Rotor 37

UMECA

INTERNATIONAL

□ Detailed description of geometry, exp. set-up and a series of simulations crossplotting the predictions can be found in [Dunham (1998)]

Test case and UQ model

Mesh size: 2 639 973 and 4 702 629 cells

RANS + Spalart-Allmaras

- Rotating Hub: 17188 rpm
- □ Use of CPU-Booster in FINETM/Turbo

Uncertainties: all PDFs are Gaussian

- i. 5 uncertainties: total inlet pressure, static outlet pressure, tip gap, LE angle, TE angle
- ii. 9 uncertainties: total inlet pressure, static outlet pressure, tip gap, LE angle (3 sections), TE angle (3 sections)

Application to Rotor 37

Overview of imposed uncertainties

UMECA

INTERNATIONAL

NUMECA

Operational and Geometrical uncertainties

Uncertainty	Most likely value (m)	Minimum value (a)	Maximum value (b)	PDF-type
Inlet total pressure	Table at station 1 in [1]	98% m	102% m	Symmetric beta-PDF
Static outlet pressure	Table 1 below	98% m	102% m	Symmetric beta-PDF

Uncertainty	Most likely value (m)	Minimum value (a)	Maximum value (b)	PDF-type
Tip clearance	M _{tip} =0.356mm	50% M _{tip}	150% M _{tip}	Symmetric beta-PDF
Leading edge angle	LE _{angle} =5	95% LE _{angle}	105% LE _{angle}	Symmetric beta-PDF
Trailing edge angle	TE _{angle} =-70	95% TE _{angle}	105% TE _{angle}	Symmetric beta-PDF

□ 5 uncertainties: LE and TE variation identical for each section □ 9 uncertainties: LE an TE variation is different for 3 sections

Automatic generation of meshes with varying tip gap

□ Same mesh size for <u>automatically</u> generated geometries with **varying tip gap**

7th Dresdner Probabilistik-Workshop

Dresden, Germany

Automatic generation of meshes with varying trailing edge angle

Automatic generation of meshes with varying trailing edge angle

□ Same mesh size for <u>automatically</u> generated geometries with **varying TE angle**

Application to Rotor 37

Level		0			1			2			3			4			5	
Dimension	Tensor	Sparse LG	Sparse EG	Tensor	Sparse LG	Sparse EG	Tensor	Sparse LO	G Sparse EG	Tensor	Sparse LG	Sparse EG	Tensor	Sparse LG	Sparse EG	Tensor	Sparse LG	Sparse EG
1	2	1	1	3	3	3	4	5	7	5	7	15	6	9	31	7	11	63
2	4	1	1	9	5	5	16	17	21	25	45	73	36	97	221	49	181	609
3	8	1	1	27	7	7	64	31	37	125	105	159	216	297	597	343	735	2031
4	16	1	1	81	9	9	256	49	57	625	201	289	1296	681	1265	2401	2001	4969
5	32	1	1	243	11	11	1024	71	81	3125	341	471	7776	1341		16807		
9	512	1	1	19683	19	19	262144	199	217	1953125	1501	1879						
10	1024	1	1	59049	21	21	1048576	241	261	9765625	1981	2441	60466176	12981		282475249		

Validation of UQ approach

VUMECA

INTERNATIONAL

Presented simulations

Additional simulations

□ Validation of UQ approach

- 1. Tensor-product with sparse grids
- 2. Parametric uncertainty model with 5 and 9 uncertainties
- 3. Influence of number of points per 1D direction and growth rate

Validation UQ approach: Tensor-product to Sparse Grid

□ Simulation with 5 uncertainties

- □ TE and LE edge angle constant along radius
- □ TE and LE edge angle with Gaussian PDF
- □ Full tensor-product (243 runs)
- Linear growth sparse grid (11 runs)

Full/sparse	Mean	Variance
Absolute_Mass_flow	1,00013	0,993831485
Absolute_total_pressure_ratio	1,000029	0,990279725

- Mean and Variance are almost identical
 - □ Validity of Sparse Grid compared to tensor-product
 - □ Sparse Grid provides same results with 22 times less simulations
 - CPU time for one computation on 6 parallel processors approx. 25 minutes: 1,5 CPUh
 - □ Total reduction in CPU time from approximately **364.5 CPUh to 16.5 CPUh**

Application to Rotor 37

Non-deterministic analysis: overview

Simulation characteristics

VUMECA

INTERNATIONAL

□ Mesh independent solution with 4 702 629 cells

RANS + Spalart-Allmaras

□ Rotating Hub: 17188 rpm

□ Use of CPU-Booster in FINETM/Turbo

UQ characteristics

Uncertainty	Most likely value (m)	Minimum value (a)	Maximum value (b)	PDF-type
Tip clearance	M _{tip} =0.356mm	50% M _{tip}	150% M _{tip}	Symmetric beta-PDF
Leading edge angle	LE _{angle} =5	95% LE _{angle}	105% LE _{angle}	Symmetric beta-PDF
Trailing edge angle	TE _{angle} =-70	95% TE _{angle}	105% TE _{angle}	Symmetric beta-PDF

Uncertainty	Most likely value (m)	Minimum value (a)	Maximum value (b)	PDF-type
Inlet total pressure	Table at station 1 in [1]	98% m	102% m	Symmetric beta-PDF
Static outlet pressure	Table 1 below	98% m	102% m	Symmetric beta-PDF

NUMECA

Application to Rotor 37

Non-deterministic analysis: C_p on blade surface - UQ

- Solution is now a PDF represented by its first two statistical moments
- Individual non-deterministic subcomputations provide some kind of sensitivity
- Uncertainty in solution is the largest in the near shock region

NUMECA

Application to Rotor 37

Non-deterministic analysis: C_p on blade surface – UQ and Sensitivity

This kind of evaluation can be conducted for any flow phenomenon of interest

Application to Rotor 37

Minimum Tip Gap

Maximum Tip Gap

Deterministic run

UQ Mean with +-1sigma
 Minimum inlet total pressure
 Maximum inlet total pressure

Non-deterministic analysis: C_{p} on blade surface – Comparison radial cuts

Cp*1=(pt_inlet-p UQ bars: ±σ 0.3 – 0.004 0.006 0.008 0.01 0.012 0.014 0.016 Axial Coord z [m] Minimum Tip Gap r = 0.21r = 0.23Maximum Tip Gap 0.6 UQ Mean with +-1sigma Minimum inlet total pressure Maximum inlet total pressure <u>u</u> 0.55 Cp*1=(pt_inlet-pt)/pt_inlet Deterministic run =(pt_inlet-pt)/pt 0.5 Cp*1 Minimum Tip Gap 0.4 0. Maximum Tip Gap UQ Mean with +-1sigma Minimum inlet total pressure 0.35 0.35 UQ bars: ±σ Maximum inlet total pressure UQ bars: ±o 0.3 0.3 0.006 0.008 0.01 0.012 0.014 0.016 0.006 0.008 0.01 0.012 0.014 0.016 Axial Coord z [m] Axial Coord z [m]

r = 0.19

0.6

-pt)/pt_inlet

 Uncertainties at different span wise locations

VUMECA

INTERNATIONAL

 Not only the deterministic and non-deterministic mean are different, but non-deterministic results is a PDF instead of a single value

7th Dresdner Probabilistik-Workshop

Dresden, Germany

Application to Rotor 37

Non-deterministic analysis: pitch-wise averaged total pressure ratio

7th Dresdner Probabilistik-Workshop

UMECA

INTERNATIONAL

Application to Rotor 37

Non-deterministic analysis: pitch-wise averaged total temperature ratio

7th Dresdner Probabilistik-Workshop

UMECA

INTERNATIONAL

40

Application to Rotor 37

Non-deterministic analysis: Compressor map

VUMECA

INTERNATIONAL

7th Dresdner Probabilistik-Workshop

Dresden, Germany

Non-deterministic analysis: Compressor map with only static outlet pressure as uncertain variable

2,2 2.14UQ bars: ±σ Variation of mass UQ bars: ±σ 2,15 flow present Ø 2,135 2,1 ∇ Pressure Ratio [-] Pressure Ratio [-] 2,13 2,05 2,125 O 2 Experimental О တ * Experimental Deterministic 2,12 Deterministic 5 Unc. with 3 points 1D 5 Unc. with 3 points 1D Min Static Pressure Outlet 1.95 ₩ Min Static Pressure Outlet Max Static Pressure IOutet Max Static Pressure IOutet 2,115 റ 1,9∟ 19 19,5 20,5 20 21 20 20,05 20,1 20,15 Mass Flow [kg/s] Mass Flow [kg/s]

□ Only the static outlet pressure as uncertainty

NUMECA

Application to Rotor 37

Non-deterministic analysis: Compressor map with only static outlet pressure as uncertain variable

□ If only the static outlet pressure is chosen, the variation vanishes close to the choke mass flow

Compressor map with minimum/maximum value for total inlet pressure

The compressor map for minimum/maximum value of the total inlet pressure is compared with the mean

7th Dresdner Probabilistik-Workshop

Dresden, Germany

Min/Max values for a selection of uncertainties

□ How to systematically assess influence of any uncertainty on the non-deterministic output

□ <u>Scaled sensitivity derivatives</u>

Application to Rotor 37

Scaled sensitivity derivatives

UMECA

INTERNATIONAL

Sensitivity derivatives allow to assess influence of a given uncertainty on the non-deterministic output systematically

$$\mathbf{s} = \sigma_i \frac{\partial u}{\partial a_i}$$

Total inlet pressure most dominant for pressure ratio and mass flow rate

Mass Flow scaled sensitivities - 5 unc

Pressure Ratio scaled sensitivities - 5 unc

Dresden, Germany

46

Application to Rotor 37

Scaled sensitivity derivatives

UMECA

INTERNATIONAL

- Sensitivity derivatives allow to assess influence of a given uncertainty on the non-deterministic output systematically
- Most influential parameter for efficiency is the LE angle
- Dimension of scaled sensitivities is the as the quantity for which it is built

Efficiency scaled sensitivities - 5 unc

Dresden, Germany

Application to Rotor 37

Non-deterministic analysis: Compressor map comparison coarse mesh

 Comparison of retained solution independent mesh with 4.7Mio cells and a coarser mesh with 700k cells

UMECA

INTERNATIONAL

- Mean value of output PDF changes, but PDF shape is comparable (standard deviation)
- This indicates a relative independence of the UQ model from the mesh resolution
- This is also investigated by several groups working on reduction of uncertain space and sampling of covariance matrices needed for Karhunen-Loeve decomposition

7th Dresdner Probabilistik-Workshop

Dresden, Germany

Test case description: RAE 2822

□ Detailed description of geometry, exp. set-up and a series of simulations cross-plotting the predictions can be found in [5]

Test case and UQ model
 Mesh size: 165 638 cells
 RANS + Spalart-Allmaras
 2D simulation
 Use of CPU-Booster in FINETM/Turbo

Flow conditions

Case 9 in [AGARD-AR-138]

 \square M_{FreeStream} = 0.730

- **α**=3.19°
- □ Re=6.5e6

Application to RAE 2822

Overview of imposed uncertainties

Geometrical uncertainties

VUMECA

INTERNATIONAL

Parameter Name	PDF type	Most likely value	Minimal value	Maximal value
thickness-to-chord ratio	Beta	nominal	97 % * nominal	103% * nominal
Control points for thickness	Beta	nominal	97% * nominal	103% * nominal
Control points for camber curve	Beta	nominal	nominal - 0.01% chord	nominal + 0.01% chord

□ 1 uncertainty

Thickness-to-chord ratio

4 uncertainties

Thickness law on 4 points

□ 7 uncertainties

Camber curve on 6 points and thickness-to-chord ratio

□10 uncertainties

□ Thickness law on 4 points and camber curve on 6 points

NUMECA

Application to RAE 2822

Automatic generation of meshes with varying thickness-to-chord ratio

□ Same mesh size for <u>automatically</u> generated geometries with **varying thickness**

□ Small variation on geometry

Automatic generation of meshes with varying camber line

Application to RAE 2822

Automatic generation of meshes with varying camber line

□ Same mesh size for <u>automatically</u> generated geometries with **varying camber line**

Smallest camber

Largest camber

Application to RAE 2822

Non-deterministic analysis: overview

Simulation characteristics

□ Mesh independent solution with 165 638 cells

RANS + Spalart-Allmaras

□ Use of CPU-Booster in FINETM/Turbo

UQ characteristics

UMECA

INTERNATIONAL

□ 1 and 4, 7 and 10 uncertainties

Parameter Name	PDF type	Most likely value	Minimal value	Maximal value
thickness-to-chord ratio	Beta	nominal	97 % * nominal	103% * nominal
Control points for thickness	Beta	nominal	97% * nominal	103% * nominal
Control points for camber curve	Beta	nominal	nominal - 0.01% chord	nominal + 0.01% chord

7th Dresdner Probabilistik-Workshop

Dresden, Germany

NUMECA

Application to RAE 2822

Non-deterministic analysis: Flow field big picture

Application to RAE 2822

Non-deterministic analysis: C_p on blade surface - UQ

UMECA

INTERNATIONAL

- Solution is now a PDF represented by its first two statistical moments
- Individual non-deterministic subcomputations provide some kind of sensitivity
- Uncertainty in solution is the largest in the near shock region

Application to RAE 2822

Non-deterministic analysis: C_p on blade surface – UQ and Sensitivity

 Individual non-deterministic subcomputations provide some kind of sensitivity

UMECA

INTERNATIONAL

- Influence of thickness much stronger on uncertainties in shock region compared to camber
- This kind of evaluation can be conducted for any flow phenomenon of interest

Application to Rotor 37

Non-deterministic analysis: C_p on blade surface – uncertainties models

VUMECA

INTERNATIONAL

58

Application to RAE 2822

PDF reconstruction - verification

UMECA

INTERNATIONAL

- Verification with known shapes of beta PDF
- Reconstruction with Pearson based on statistical moments of output PDF
- More information than centered UQ-bars around mean value, which implies symmetry due to lack of information of higher moments

7th Dresdner Probabilistik-Workshop

Symmetric Beta

Dresden, Germany

59

Application to RAE 2822

PDF reconstruction

UMECA

INTERNATIONAL

- □ Reconstruction at point relative chord 0.53
- □ Mean and UQ-bars indicate symmetric PDF
- □ Higher moments show a skew PDF

Outline

Context

□ UQ tool for simultaneous operational and geometrical uncertainties implemented in FINETM

□ Application of Uncertainty Quantification in Industrial Applications

□ Perspective

Where to go from here?

□ Treatment of generalized geometrical uncertainties

- Uncertain fields in addition to parameterized geometrical uncertainties
- Uncertain profiles as boundary conditions vs. constant values

Robust design – design under uncertainties
 Account for uncertainties in the optimization process
 Drastic increase in computations to be performed
 Reduction of uncertain space is important

□ Extend to arbitrary geometries

Open to custom flow solvers and structural mechanics codes

References

Dunham J, 1998, CFD validation for propulsion system components, AGARD-AR-355

Golub GH, Welsch JH, 1969, Calculation of Gaussian Quadrature rules, Math. Comp. 23:221-230

Green L, (2011), *Lecture on Advanced Uncertainty Analysis*, NASA/NIA Summer Design Institute on Uncertainty, August 4, 2011

Loeven, GJA, 2010, *Efficient uncertainty quantification in computational fluid dynamics, Doctoral thesis*, Technische Universiteit Delft

Pearson K, 1895, 1901, 1915, Philosophical Transactions of the royal Society of London. 8 laws variant.

Roge G, 2013, *Foundations of Method of Moments - Lecture 1*, Mathematical Methods and Tools in Uncertainty Management & Quantification, Ercoftac course

Smolyak S, 1963, *Quadrature and Interpolation formulas for tensor products of certain classes of functions*, Dokl. Adad. Nauk USSR B, 240-243

Various, 1979, *EXPERIMENTAL DATA BASE FOR COMPUTER PROGRAM ASSESSMENT* - Report of the Fluid Dynamics Panel Working Group, AGARD-AR-138, ISBN 92-835-1323-1

Acknowledgement

"The research leading to these results has gratefully received funding from the European Union's Seventh Framework Programme (2007-2013) under grant agreement number 605036, UMRIDA project."

